Kelvin-Helmholtz instability and heating in oscillating loops perturbed by power-law transverse wave drivers

Author:

Karampelas KonstantinosORCID,Van Doorsselaere TomORCID,Guo MingzheORCID,Duckenfield TimothyORCID,Pelouze GabrielORCID

Abstract

Context. Instabilities in oscillating loops are believed to be essential for dissipating the wave energy and heating the solar coronal plasma. Aims. Our aim is to study the development of the Kelvin-Helmholtz (KH) instability in an oscillating loop that is driven by random footpoint motions. Methods. Using the PLUTO code, we performed 3D simulations of a straight gravitationally stratified flux tube. The loop footpoints are embedded in chromospheric plasma, in the presence of thermal conduction and an artificially broadened transition region. Using drivers with a power-law spectrum, one with a red noise spectrum and one with the low-frequency part subtracted, we excited standing oscillations and the KH instability in our loops, after one-and-a-half periods of the oscillation. Results. We see that our broadband drivers lead to fully deformed, turbulent loop cross-sections over the entire coronal part of the loop due to the spatially extended KH instability. The low RMS velocity of our driver without the low-frequency components supports the working hypothesis that the KH instability can easily manifest in oscillating coronal loops. We report for the first time in driven transverse oscillations of loops the apparent propagation of density perturbations due to the onset of the KH instability, from the apex towards the footpoints. Both drivers input sufficient energy to drive enthalpy and mass flux fluctuations along the loop, while also causing heating near the driven footpoint of the oscillating loop, which becomes more prominent when a low-frequency component is included in the velocity driver. Finally, our power-law driver with the low-frequency component provides a RMS input Poynting flux of the same order as the radiative losses of the quiet-Sun corona, giving us promising prospects for the contribution of decayless oscillations in coronal heating.

Funder

Fonds Wetenschappelijk Onderzoek

H2020 European Research Council

KU Leuven Internal Funds

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3