Performance evaluation of rough thrust pad bearing under thermo-elastohydrodynamic lubrication using an improved iterative method

Author:

Kumar Rahul,Azam Mohammad Sikandar,Ghosh Subrata Kumar,Khan Hasim

Abstract

The asperities present on interacting surfaces of a bearing influence the film formation when the oil film becomes thinner and thinner. The aim of this article is to study the effect of stochastic roughness on bearing performance under thermo-piezoviscous and elastic condition using an average flow model. To investigate the present operating conditions, progressive mesh densification method as a fast and simple algorithm has been applied. The results obtained indicate that transverse roughness generates higher pressure compared to other orientational roughness at various film thicknesses. Maximum pressure, mass flow rate and load capacity are larger in transverse roughness compared to other orientational roughness for all values of hydrodynamic roughness parameters. A large sensitivity in load capacity for transverse orientation compared to longitudinal at higher film thickness and small film thickness ratios are witnessed. The frictional coefficient in longitudinal orientation is large compared to transverse orientation at all values of film thickness ratio and step ratios. Materials with low elastic modulus undergo large deformation, resulting in generation of two sharp pressure peaks. These results may possess good acceptability to practical applications for studying the effect of surface roughness under thermo-elastohydrodynamic lubrication condition.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3