An adaptive LQR controller based on PSO and maximum predominant frequency approach for semi-active control scheme using MR damper

Author:

Kumar Gaurav,Kumar Ashok,Jakka Ravi S.

Abstract

In the linear quadratic regulator (LQR) problem, the generation of control force depends on the components of the control weighting matrix R. The value of R is determined while designing the controller and remains the same later. Amid a seismic event, the responses of the structure may change depending the quasi-resonance occurring between the structure and the earthquake signal. In this situation, it is essential to update the value of R for conventional LQR controller to get optimum control force to mitigate the vibrations due to the earthquake. Further, the constant value of the weighting matrix R leads to the wastage of the resources using larger force unnecessarily where the structural responses are smaller. Therefore, in the quest of utilizing the resources wisely and to determine the optimized value of the control weighting matrix R for LQR controller in real time, a maximum predominant period τpmax and particle swarm optimization-based method is presented here. This method comprises of four different algorithms: particle swarm optimization (PSO), maximum predominant period approach τpmax to find the dominant frequency for each window, clipped control algorithm (CO) and LQR controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done on a three-story structure having a MR damper at ground floor subjected to three different near fault historical earthquake time histories. The outcomes are equated with those of simple conventional LQR. The results establish that the advised methodology is more effective than conventional LQR controllers in reducing inter-story drift, relative displacement, and acceleration response.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart optimized structural control of onshore wind turbines with MR dampers;Engineering Structures;2024-01

2. Investigation of the Robust H-Infinity Filter's Effectiveness on the Model Predictive Control and Linear Quadratic Regulator for Active Seismic Control of High-Rise Buildings;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2023-08-31

3. A Review of the Controllers for Structural Control;Archives of Computational Methods in Engineering;2023-05-13

4. Development of modified LQG controller for mitigation of seismic vibrations using swarm intelligence;International Journal of Automation and Control;2023

5. Recent Advances in Hybrid Vibration-Control Systems;Practice Periodical on Structural Design and Construction;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3