Analyzing different numerical linearization methods for the dynamic model of a turbofan engine

Author:

Montazeri-Gh Morteza,Rasti Ali

Abstract

State equations of aircraft engine dynamics usually required for controller design, are not available in closed form, so the dynamic models are commonly linearized numerically. Development of model-based controllers for aeroengine in the recent years necessitates the use of accurate linear models. However, there is no comprehensive study about the accuracy of the linear models obtained from nonlinear engine models. In this paper, the accuracy of different numerical linearization methods for linearizing the dynamic model of a turbofan engine is investigated. For this objective, a thermodynamic model of a two-spool turbofan engine is considered and three various numerical linearization methods are defined. The first method is based on the perturbation technique, including ordinary and central difference perturbation. The second one is a system identification method and the third one is tuning the elements of the matrices of the linear state-space model using genetic algorithm. The accuracy analysis of the presented procedures is performed for both single-input and double-input cases. In the single-input case, the fuel mass flow rate and in the double-input, in addition to the fuel, the bleed air taken from between the two compressors are considered as control variables. Finally, by defining different error criterions, the accuracy of the linearization methods is evaluated. The results show that the linear model obtained from system identification and central difference perturbation methods have higher percentage of compliances compared to the others.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Reference34 articles.

1. Mattingly J.D., Jaw L.C., Aircraft engine controls: Design, system analysis, and health monitoring (First Ed.), AIAA, Reston, 2009

2. Mattingly J.D., Heiser W.H., Pratt D.T., Aircraft engine design (Second Ed.), AIAA, Reston, 2002

3. Kulikov G.G., Thompson H.A., Dynamic modelling of gas turbines: Identification, simulation, condition monitoring, and optimal control, Springer, London. G.G, 2004

4. Lietzau K., Kreiner A., The use of onboard real-time models for jet engine control, MTU Aero Engine, Germany, 2004

5. Ballin M.G., A high fidelity real-time simulation of a small turboshaft engine, NASA TM-1009 91, 1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3