Abstract
The present work is focused on the hot deep drawing process for cylindrical 5083 aluminum alloy parts, by superimposing a thermal gradient between the blank center-flange region. The imprtance of application of forming processes at elevated temperatures, in improving the formability, has increasingly attracted attention in recent years. As a case study, the experimental and numerical tests were performed at three speeds (60, 200 and 378 mm min−1) from room temperature (RT) up to 0.9 melting point, inspired by the advent of extraordinary superplastic behavior of AA5083 in hot condition. In particular, the focus was on the effects of forming speed on punch load, thickness distribution, and earing behavior. Finite element simulations were run in order to investigate the limiting drawing ratio and temperature gradient. The tests highlight that by increasing the temperature, the number and the position of the ears are constant, while the height of ears decreases. Furthermore, limiting drawing ratio equal to 2.84 is reached at 550 °C.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献