The formation of the cutting tool microgeometry by pulsed laser ablation

Author:

Fedorov Sergey V.,Ostrikov Evgeny A.,Mustafaev Enver S.,Hamdy Khaled

Abstract

Laser ablation is considered as an alternative to other methods that allow precise processing of various tool materials and work with both the base material and thin films of wear-resistant coatings. This article presents an investigation of the possibility of setting the microgeometry of the surface of cutting tool made of high-speed steel M2 and hard alloy WCCo3 using ablation with nanosecond infrared marking Nd:YVO4 laser. Dependencies of the width and depth of the resulting tracks on the specified laser power are obtained. It was revealed that their depth depends on a set of several specified factors: power, scanning speed, pulse frequency rate, and a number of passes. The modes with a radiation power of up to 70% are of interest for the treatment of the tool surface using a laser because they have a more predictable profile and more efficient energy distribution. The most uniform and smooth surface were obtained after laser treatment with the following parameters: power 60%, frequency 10 kHz, scanning speed 200 mm/s irrespective of the material being processed. The greater flexibility of the coating material for laser processing was observed. The depth of tracks on the coated (TiAl)N samples is larger than on the uncoated samples. The possibility to obtain a chamfer with the specified width and angle parameters by laser processing based on the obtained dependencies is demonstrated.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3