Stress analysis of metallic thick-walled high-pressure elbows overwrapped with composite material

Author:

Xiao Yong,Hu Yefa,Zhang Jinguang,Song Chunsheng,Huang Xiangyang,Liu Zhaobing

Abstract

In this paper, Carbon fibre-reinforced plastic (CFRP) is used to reinforce metal elbow, which is a new concept and has the potential to improve the strength of metal elbow. For the elbow, the circumferential stress is the main factor for its failure. In this study, a new stress model of thick-walled high pressure elbow reinforced by composite material is presented to predict the stress distribution. Three-dimensional solid model of elbow is constructed and finite element simulations for the elbow are performed to verify the accuracy of the theoretical model. From the results obtained, the maximum circumferential stress of elbow being reinforced by CFRP is smaller than that of elbow not being reinforced by CFRP. The thinner the wall thickness of metal elbow, the more obvious the effect of CFRP will be. The thicker the wall thickness of metal elbow and the thinner the wall thickness of CFRP, the better the accuracy of stress model will be. When the wall thickness of metal elbow is 25 mm, the deviation is smaller than 4%. Therefore, the new stress model is suited for providing stress expression generally. In addition, failure analysis on metal elbow reinforced by CFRP shows that failure of metal layer is the major cause for failure of CFRP layer, i.e. if the metal layer do not fail, neither do CFRP layer. This provides more proof to justify the accuracy and application of the stress model considering the effect of CFRP.

Funder

The National Natural Science Foundation of China-China Aerospace Science and Technology Corporation joint fund of aerospace advanced manufacturing technology research

The Fundamental Research Funds for the Central Universities

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3