POD and Fourier analyses of a fluid-structure-acoustic interaction problem related to interior car noise

Author:

Gaudard Éric,Druault Philippe,Marchiano Régis,Van Herpe François

Abstract

In order to approach a flow configuration revealing the aerodynamic noise contribution in the interior of road vehicles due to the A-pillar vortex, a numerical simulation of a Forward Facing Step (FFS) coupled with a vibrating structure is performed. This numerical study is based on a weak coupling of three solvers to compute (i) the flow field in interaction with the FFS, (ii) the vibration of the structure and (iii) the acoustic radiation in the open cavity. The purpose of this work is then to evaluate the ability of two different post-processing methods: Proper Orthogonal Decomposition and Fourier Decomposition to identify the origin of the noise radiated into a cavity surrounded by an unsteady flow. Fourier and POD decompositions are then successively performed to extract the part of the aeroacoustic wall pressure field impacting the upper part of an upward step mainly related to the radiated acoustic pressure in the cavity. It is observed that the acoustic part, extracted from the wavenumber frequency decomposition (Fourier analysis) of the wall pressure field generates a non-negligible part of the interior cavity noise. However, this contribution is of several orders smaller than the one related to the aerodynamic part of the pressure field. Moreover, it is shown that the most energetic part of the pressure field (POD analysis) is due to the shear flapping motion and mainly contributes to the low-frequency noise in the cavity. Such post-processing results are of particular interest for future analyzes related to the noise radiated inside a car.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3