1D gas dynamic code for performance prediction of one turbocharger radial turbine with different finite difference schemes

Author:

Ketata AhmedORCID,Driss Zied,Abid Mohamed Salah

Abstract

The turbine, a key component of a turbocharger, is usually characterized by steady flow solutions. This method seems to be physically unrealistic as the fluid flow within a turbine is strongly unsteady due to the pulsating nature of the flow in the exhaust manifold of a reciprocating engine. This paper presents a new 1D gas dynamic code, written in the FORTRAN language, to characterize a radial turbine of one turbocharger embedded to a small gasoline engine. This code presents the novelty of meanline-1D coupling and the feature of numerical schemes choice. In this study, the turbocharger turbine is simulated with six different finite difference schemes. The computed distribution of the downstream mass flow rate, from the different cases, is compared to test data in order to choose the most suitable scheme. Test data are gathered from a developed test facility. Based on the computed results, unsteady performance of the turbine has been computed and discussed for the different schemes at two engine frequencies of 50 and 83.33 Hz. The results showed a significant impact of the numerical scheme on the 1D prediction of the turbine performance. Results indicated that the MR2LW finite-difference scheme has led to the minimum deviation of the numerical results to test data compared to the other considered schemes.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3