Planar tool radius compensation for CNC systems based on NURBS interpolation

Author:

Li Jiangang,Wang Qian,Zhong Ganggang

Abstract

This paper introduces the realization of a tool radius compensation algorithm for NURBS trajectory. First, a single-segment NURBS trajectory tool radius compensation algorithm is developed. Different from the straight line and arc trajectory, the self-intersection phenomenon is prone to happen when calculating a single NURBS tool center trajectory, and the self-intersection will cause the overcut of workpiece. To avoid this situation, the algorithm introduced in this paper can detect whether the NURBS tool center track has caused overcut, and deal with the self-processing. Second, the tool radius compensation algorithm with multi-segment NURBS trajectory is implemented. The focus of this part is the tool radius compensation of the trajectory transfer, and the trajectory transfer is divided into two types: the extension type and the shortened type. For the shortened type transfer, cross-processing is needed to avoid the overcut of workpiece at the transfer. When calculating the tool radius compensation of the shortened type, we not only need to find the intersection of the tool center trajectory of two adjacent NURBS curves, but also need to select the intersection we need when a number of intersections exist. For the extension type transfer, in order to ensure the continuity of the tool center trajectory, we need to extend the tool center trajectory or add arc-segment at the transfer. The proposed algorithm can automatically decide where to extend the tool center trajectory or add arc-segment to achieve the best efficiency. Finally, the algorithm can output the calculated NURBS tool center trajectory in the form of linear segment interpolation G code or NURBS interpolation G code according to the processing needs. Simulations on VERICUT and experiments on three-axis CNC machine tool shows the effectiveness and validation of the tool path compensation algorithm.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlation assessment and modeling of intra-axis errors of prismatic axes for CNC machine tools;The International Journal of Advanced Manufacturing Technology;2022-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3