Simulation of gas quenching

Author:

Frerichs F.,Lübben Th.,Fritsching U.,Lohner H.,Rocha A.,Löwisch G.,Hoffmann F.,Mayr P.

Abstract

The prediction of mechanical behaviour of specimen during heat treatment by means of numerical simulation requires numerous modules e.g. for heat transfer and mechanical behaviour. The quality of predictions depend on the quality of the applied models within the modules. In this paper the strain hardening model used in the mechanical module will be investigated. For simulation of mechanical behaviour during gas quenching it is first of all necessary to calculate the interaction between gas and specimen. Using simulated flow field and temperature distribution within the gas, the heat transfer coefficient is calculated from computational fluid dynamics. The cooling and further the mechanical behaviour e.g. residual stresses and distortion of the specimen are simulated by a commercial Finite Element program. To investigate strain hardening it is helpful to choose in a first step a material that will not show phase transformations due to heat treatment. Therefore simulation of mechanical behaviour of austenitic cylinders (SAE30300) is investigated. The required thermo-physical properties such as thermal conductivity, density, and specific heat are taken from literature. With the exception of Poisson’s ratio the mechanical properties are measured and calculated by own investigations. For description of the temperature dependent stress strain curves the Ramberg-Osgood model is used. The simulated results are compared with experimental data in order to decide which model better describes the mechanical response, whether the kinematic or isotropic strain hardening.

Publisher

EDP Sciences

Subject

General Physics and Astronomy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quenching and Distortion;Quenchants and Quenching Technology;2024-02-01

2. Quenching and Distortion;Quenchants and Quenching Technology;2024-02-01

3. Finite Element Simulation and Optimization of Gas-Quenching Process for Tool Steels;Journal of Materials Engineering and Performance;2018-07-05

4. A mesoscopic approach of the quench cracking phenomenon influenced by chemical inhomogeneities;Engineering Failure Analysis;2017-08

5. Modeling of Dimensional Changes and Residual Stresses After Transformation-Free Cooling;Materials Performance and Characterization;2014-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3