Ionic wind velocity and energy efficiency improvement in needle-net ionic wind generator by electrical field optimization

Author:

Zhang Dongxuan,Bu Fan,Zhao Yulei,Fang Zhi,Liu FengORCID

Abstract

Ionic wind produced by high voltage discharge has been proved as a promising technique in heat dissipation, food drying, electrostatic precipitation and air propulsion. On the other hand, the low wind velocity and the low energy efficiency of the ionic wind generators limit their performance in practical industrial applications. To improve this, a single needle-net electrode structure ionic wind generator driven by positive DC voltage is constructed and the effects of the applied voltage and electrode structure on the discharge characteristics and the converting efficiency from electric energy to kinetic energy have been investigated. The results show that with the increase of the applied voltage from 4 kV to 11 kV, the discharge shows four stages, burst pulse, streamer corona, glow corona and spark discharge, and the wind velocity increases monotonously and reach 1.90 m/s at 11 kV. At the same applied voltage, the shorter needle-net distance leads to the larger wind velocity. At 15 mm needle-net distance, the needle-net electrode structure ionic wind generator shows a maximum energy efficiency value of 2.19%. A metal circular plate is attached on the needle electrode to change the spatial electric field distribution, increase the field intensity of the discharge gap, and promote the particle collision. It is found that the wind velocity and energy efficiency can be improved from 1.90 m/s to 2.35 m/s, and 1.87% to 3.14%, at same applied voltage and needle-net distance. The cooling experiment shows that the ionic wind generator with metal circular plate needle-net electrode has better heat dissipation effect.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3