Response surface methodology based analysis of the impact of nanoclay addition on the wear resistance of polypropylene

Author:

Saralch Sudhir,Jagota Vishal,Pathak Dinesh,Singh Vishal

Abstract

The addition of nanoclay in the polypropylene matrix has many applications in the field of automotive, packaging and aeronautical industry. Nanocomposites of polypropylene with nanoclay phr (part per hundred of resin) of 2.5, 5.0, 7.5 and 10 are prepared using melt mixing in twin-screw extruder and injection molding. The dispersion of nanoclay in the polypropylene matrix played a significant role in the preparation of nanocomposites. The freeze-fractured microstructures of the 5 phr of nanoclay composites shows better dispersion of clay particles in the polypropylene matrix. Tensile testing is performed to quantify the strength with respect to nanoclay phr in the nanocomposites. Stress strain behaviors during the tensile testing along with critical examining using field emission scanning electron microscope of the fracture surface have evolved that phr value around 5 provide maximum strength. In addition to this, surface roughness of these nanocomposites also indicate that the nanocomposites formed by 5 phr nanoclay give better surface finish. The wear behavior of nanocomposites is investigated using pin-on-disc tribo-tester at different loads (10, 20 and 30 N) and sliding speeds (0.5, 1.5 and 2.5 m/s). A response surface methodology based model is developed to explore the impact of nanoclay phr along with load and sliding speed on the wear behavior of these nanocomposites. Response surface methodology is a statistical technique in which the interaction among process variables is studies. It uses a sequence of design experiments to get an optimal response. It was found that 4.19 phr provides to be optimal value of nanoclay content exhibiting better wear resistance. Present study of composites with nanoclay reinforcement in polypropylene matrix concludes that phr value ranging around 4 to 5 gives best results.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3