Multi-objective evolutionary algorithm as a method to obtain optimized nanostructures

Author:

Díaz de León-Zapata RamónORCID,González-Fernández José V.ORCID,Flores-García EfrénORCID,de la Rosa Zapata Ariel B.ORCID,Lara-Velázquez Ismael

Abstract

The field of plasmonics, an optics discipline that studies the interaction of light with matter for structures with dimensions similar to the wavelength of the electromagnetic radiation affecting them, has been further developed with the support of computational technologies that are capable of performing calculations with large volumes of data to solve the complex problems of this discipline. Some of the problems in plasmonics require the use of algorithmic techniques that can simultaneously handle more than one function that tend not to present their maximum or minimum at the same point, i.e., their optimal performances conflict with each other. In this paper, we present the results of the use of a multi-objective genetic algorithm to obtain the maximum plasmonic resonance in nanoparticles assuming three relevant factors: geometry, current density, and electric field, which are, in turn, the three objective functions for the proposed algorithm. The method used for the characterization of the nanoparticles was a numerical simulation using the finite element method. To verify the results, the electromagnetic radiation patterns and other optical properties of the obtained nanoparticles were compared with those of nanoparticles reported in the literature. Possible applications and work in progress are also discussed.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Algorithms for Molding with Bezier Curves: A Novel Way to Obtain Optimized Structures at Nanoscale;Lecture Notes in Nanoscale Science and Technology;2022

2. Applications of the Fundamentals of Bézier Curves;Mathematical Topics on Modelling Complex Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3