Thermo-mechanical energy harvesting and storage analysis in 0.6BZT-0.4BCT ceramics

Author:

Patel SatyanarayanORCID,Kumar Manish,Kashyap Yashwant

Abstract

Present work shows waste energy (thermal/mechanical) harvesting and storage capacity in bulk lead-free ferroelectric 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 (0.6BZT-0.4BCT) ceramics. The thermal energy harvesting is obtained by employing the Olsen cycle under different stress biasing, whereas mechanical energy harvesting calculated using the thermo-mechanical cycle at various temperature biasing. To estimate the energy harvesting polarization-electric field loops were measured as a function of stress and temperatures. The maximum thermal energy harvesting is obtained equal to 158 kJ/m3 when the Olsen cycle operated as 25–81 °C (at contact stress of 5 MPa) and 0.25–2 kV/mm. On the other hand, maximum mechanical energy harvesting is calculated as 158 kJ/m3 when the cycle operated as 5–160 MPa (at a constant temperature of 25 °C) and 0.25–2 kV/mm. It is found that the stress and temperature biasing are not beneficial for thermal and mechanical energy harvesting. Further, a hybrid cycle, where both stress and temperature are varied, is also studied to obtain enhanced energy harvesting. The improved energy conversion potential is equal to 221 kJ/m3 when the cycle operated as 25–81 °C, 5–160 MPa and 0.25–2 kV/mm. The energy storage density varies from 43 to 66 kJ/m3 (increase in temperature: 25–81 °C) and 43–80 kJ/m3 (increase in stress: 5–160 MPa). Also, the pre-stress can be easily implemented on the materials, which improves energy storage density almost 100% by stress induced domain switching. The results show that stress confinement can be used to enhance energy storage effectively.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3