Modelling of composite materials energy by fiber bundle model

Author:

Boufass Siham,Hader Ahmed,Tanasehte MohammedORCID,Sbiaai Hicham,Achik Imad,Boughaleb Yahia

Abstract

In this paper, the fiber energy in composite materials, subject to an external constant load, is studied. The investigation is done in the framework of fiber bundle model with randomly oriented fibers. The charge transfer is done only between neighboring close fibers according to the local load sharing. During the breaking process, the fibers expand, increasing their elastic energy, but when the fiber breaks, it loses its link with its neighboring fibers reducing the cohesive energy of the materials. The results show that the material energy presents one maximal peak at cross over time which decreases linearly with the applied force and scales with the lifetime of the material. However, the temperature does not have a remarkable effect on the material energy variation. In addition, the link density fiber decreases exponentially with time. The characteristic time of the obtained profile decreases with the applied force. Moreover, this density decreases with applied forces according to the Lorentz law with a remarkable change at critical force value.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3