Mechanism of broadened phase transition temperature range in LaFeCoSiC compounds prepared upon high-pressure annealing

Author:

Zhang ZhengmingORCID

Abstract

The cobalt-carbon co-doped NaZn13-type compound LaFe10.95Co0.65Si1.4C0.15 (LFCSC) is one of the most promising candidates for room-temperature working substance in magnetic refrigerator due to its many excellent properties such as large reversible entropy, low cost, and short annealing time. However, owing to the narrow temperature regions of magnetic phase transition in LFCSC, the operation-temperature window for magnetic refrigeration is limited, which restricts its actual application to some extends. In this paper, it is shown that the application of high-pressure to LFCSC during annealing can tailor atomic environment and magnetic transition, which leads to a strongly expanded phase transition temperature range in LFCSC. This broadening behavior can be well understood by importing the magnetoelastic interaction of localized magnetic moments into a microscopic model. The refrigeration performance of the high-pressure annealed sample with wide phase transition temperature range is enhanced according to the relative cooling power (RCP). On the contrary, temperature averaged entropy change (TEC) exhibits a weakened value in the high-pressure annealed sample, which suggests that the magnetic cooling performance could not be effectively improved by simply expanding the phase transition temperature range in the second-order phase transition materials. However, high-pressure annealing would be helpful to the magnetic refrigeration performance for the first-order phase transition materials.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3