Author:
Arfaoui Nawel,Boukhili Walid,Mahdouani Mounira,Puigdollers Joaquim,Bourguiga Ramzi
Abstract
In this work, pentacene based thin film transistors (TFTs) with different channel lengths (L = 2.5, 5, 10 and 20 μm) have been fabricated and characterized electrically. Exploiting the electrical characteristics, we have analyzed the channel length effect on the key parameters of fabricated TFTs. We found that the performance of pentacene-TFTs was enormously enhanced by the reduction of channel length .We have also examined the influence of contact and channel resistances (RC and Rch) on the electrical proprieties of fabricated TFTs, using the transmission line method (TLM). Then, we have modeled the dependence of the total resistance RT on the gate voltage VG using the grain boundary trapping Meyer–Neldel rule (GBT-MNR) model and we have successfully reproduced, the output characteristic of pentacene TFTs using the overall resistance extracted from the GBT-MNR model. Finally, in order to investigate the channel length effect on the dynamic behavior of fabricated devices, we have reported a dynamic model based on the quasistatic assumptions which were used for metal-oxide-semiconductor field-effect transistor (MOSFET). Accordingly, we have presented a simple small-signal equivalent circuit to calculate theoretically the capacitances of pentacene-TFTs for different channel lengths.
Subject
Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献