Static and dynamic modeling of organic thin film transistors: effect of channel length on the Mayer–Neldel rule energy and quasistatic capacitances

Author:

Arfaoui Nawel,Boukhili Walid,Mahdouani Mounira,Puigdollers Joaquim,Bourguiga Ramzi

Abstract

In this work, pentacene based thin film transistors (TFTs) with different channel lengths (L =2.5, 5, 10 and 20 μm) have been fabricated and characterized electrically. Exploiting the electrical characteristics, we have analyzed the channel length effect on the key parameters of fabricated TFTs. We found that the performance of pentacene-TFTs was enormously enhanced by the reduction of channel length .We have also examined the influence of contact and channel resistances (RC and Rch) on the electrical proprieties of fabricated TFTs, using the transmission line method (TLM). Then, we have modeled the dependence of the total resistance RT on the gate voltage VG using the grain boundary trapping Meyer–Neldel rule (GBT-MNR) model and we have successfully reproduced, the output characteristic of pentacene TFTs using the overall resistance extracted from the GBT-MNR model. Finally, in order to investigate the channel length effect on the dynamic behavior of fabricated devices, we have reported a dynamic model based on the quasistatic assumptions which were used for metal-oxide-semiconductor field-effect transistor (MOSFET). Accordingly, we have presented a simple small-signal equivalent circuit to calculate theoretically the capacitances of pentacene-TFTs for different channel lengths.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3