Abstract
In this review, advances in nanoscale dielectric materials for organic field-effect transistors (OFETs) are summarized. OFETs are highly promising device units for ultra-thin, light-weight, flexible, and wearable electronics systems, while the operating voltages of the reported devices are in many cases much higher than what is relevant to modern technological applications. Key aspects behind this issue are clarified in terms of basic transistor device physics, which translate into the important motivations for realizing nanodielectric-based low-voltage OFETs. Different possibilities of a device design are explained in detail by introducing important recent publications on each material class. Finally, several forward-looking remarks on the integration of nanodielectrics into next-generation OFETs are provided.
Subject
Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献