A facile route to obtain binary micro-nano roughness on composite coating surface

Author:

Feng Yefeng,Xu Zhichao,Peng ChengORCID,Huang Hongpu,Hu Jianbing

Abstract

Binary micro-nano rough morphology or structure shows a significant influence on hydrophobicity and icing-resistivity of the surface of coating materials. The leading cause for the classic Cassie state superhydrophobicity is the high area fraction of micro/nano air mattresses being in direct contact with a measured droplet. In this work, the dependence of static hydrophobicity on weight content of commercial surface-hydrophobicity-modified nano-silica in fluoropolymer based composite coatings has been investigated in detail via detecting static water contact angle (CA). It was found that elevating the weight content of hydrophobic nano-silica could contribute to a higher surface roughness, a more compact binary micro-nano morphology and a larger area ratio of air mattresses due to a stronger hypothesized phase separation. As a result, the remarkably improved water CA of composite coatings far higher than the neat polymer coating was observed relying on coating composition. Fortunately, the maximum static water CA of 167° was obtained in composite coating loaded with 50 wt% of hydrophobic nano-silica. For gaining the desired high comprehensive performances, it was advised to introduce 30 wt% of nano-filler into polymer. This work might open a facile route to achieve the promising superhydrophobic and anti-icing materials.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3