Abstract
The main objective of this paper is to study the dielectric behavior of a quaternary composite, made from a mixture of barium titanate (BT), manganese dioxide (MnO2) and calcium oxide (CaO) in the same epoxy resin matrix (RE) maintained at 70% by volume fraction, while those of the other constituents are variable and completing each other in a way to achieve the remaining proportion, i.e. 30%. Random mixtures are made at room temperature and under atmospheric pressure. A dielectric characterization of this mixture type was performed by time-domain spectroscopy (TDS) over a frequency wide band (DC–2 GHz). This has been carried out to illustrate the effect of two oxides (MnO2 and CaO) simultaneously at low frequency (500 MHz), in the presence of (BT), on the composite dielectric behavior. This has led consequently to make a comparison between the present acquired results and those of the ternary composite, where (MnO2) and (CaO) act separately. The results obtained so far in this study allowed us to check the validity of the modified Lichtenecker law (MLL)-based predictive model in the quaternary composite case. The interest of this study lies on applications of these materials in microelectronics circuits and absorber materials in telecommunication domain.
Subject
Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献