Design and simulation of locally enhanced microchannel heat sink for diode partially pumped slab laser

Author:

Guo Zhanfeng,Sun Yunna,Wang Yan,Wang Guangyuan,Song Xutong,Ding Guifu

Abstract

With the power level of diode-pumped solid-state laser (DPSSL) rising continuously, its thermal effect has become the main problem limiting the laser performance. In this paper, based on the heat distribution of diode partially end-pumped slab (Innoslab) laser, a shunt rectangular microchannel heat sink with locally enhanced heat dissipation is designed. Firstly, multi-stage parallel short channels are designed in the heat concentration area to enhance the solid-liquid heat exchange in this area, and the effects of structure and working conditions on its heat dissipation performance are investigated. Secondly, the copper layer is introduced into the end face of the low thermal conductivity crystal to form a high thermal conductivity path, which alleviates the heat accumulation inside the crystal. Under a certain condition, compared with the traditional liquid-cooled plate system, the maximum temperature of the laser crystal is reduced from 169.62 to 118.18 °C, the pressure drop is reduced by 66.75%, and the total mass of the system is reduced to 4.87% of the original system, which effectively improves the practical performance of the device.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3