Estimating Al2O3–CO2 nanofluid viscosity: a molecular dynamics approach

Author:

Ahmed Zeeshan,Bhargav Atul,Mallajosyula Sairam S.

Abstract

High-viscosity CO2 is of interest to the oil and gas industry in enhanced oil recovery and well-fracturing applications. Dispersing nanoparticles in CO2 is one way of achieving increased viscosity. However, parametric studies on viscosity estimation of CO2 nanofluids is not found in the open literature. A comparison of various interatomic potentials for their accuracy in predicting viscosity is also missing. In this work, we studied Al2O3 nanoparticles in CO2 base fluid. We screened the inter-molecular interaction potential models available for CO2–CO2 interactions and found that the TraPPE-flexible model (with MORSE potential) to be most suitable for conditions used in this work. We estimated the CO2–Al2O3 interaction potential using quantum mechanical simulations. Using this combination for CO2–CO2 and CO2–Al2O3 interactions, we explored the effects of temperature and nanoparticle size on viscosity using molecular dynamics simulations (MD). We predicted that the viscosity would increase with increase in temperature and particle size. We also calculated the base fluid self-diffusion coefficient to investigate the effect of Brownian motion and its contribution to changes in viscosity. We found that it decreases with increase in particle size and temperature, thereby indicating that Brownian motion does not contribute to the increased viscosity. Further, the nanolayer formed at the Al2O3–CO2 interface is studied through density distributions around the nanoparticle; the thickness of this nanolayer is found to increase with nanoparticle diameter. Finally, we examined the structures of CO2 fluid in presence of nanoparticles at different thermodynamic states through radial distribution functions. The current work sheds light on the viscosity enhancement by the addition of nanoparticles; it is hoped that such studies will lead to tools that help tailor fluid properties to specific requirements.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3