Microstructure and mechanical properties of particle reinforced high-temperature titanium composites

Author:

Tabie Vitus Mwinteribo,Quaisie James Kwasi,Li Jianwei,Yamba Philip,Xu Xiaojing

Abstract

In this research, a novel high-temperature titanium alloy, Ti750, was used as matrix and SiCp, SiCw, B4C, and GNPs as reinforcements to prepare both ex situ and in situ composites using spark plasma sintering process. The microstructure and mechanical properties of the samples were then examined and evaluated. The results show that the microstructures and phase compositions of the ex situ composites contain mainly SiC particles homogeneously distributed in the α-Ti matrix. The in situ synthesized composite, however, mainly contains TiC and Ti5Si3 reinforced phases in the Ti-rich matrix. The in situ composite had the best mechanical properties among all the materials. It recorded 1164 HV and 924 MPa in Vickers microhardness and room temperature compressive tests respectively. It also had the lowest apparent porosity (4.89%) among the composites but slightly higher than matrix material (4.67%). The in situ composite thus presents a better option to the Ti750 alloy which is currently used for high-temperature applications.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3