A novel ANN-based method for simultaneous estimation of thermophysical properties using experimental photothermal data

Author:

Reoyo-Prats Reine,Grieu Stéphane,Faugeroux Olivier,Claudet Bernard

Abstract

In this paper, a novel artificial neural network (ANN) based method dedicated to simultaneously estimating thermal conductivity and thermal diffusivity of CSP (concentrating solar power) plant receiver materials is presented. By monitoring the evolution of these two correlated thermophysical properties during aging cycles, CSP plants' cost efficiency could be maintained. The proposed method is based on the processing of experimental photothermal data using classification and estimation networks. All the networks are feedforward ANN trained with supervised learning algorithms. A pseudo random binary signal (PRBS) is used as excitation and the impact on performance of both the photothermal response length, which is used as model input, and the number of training examples has been evaluated. Of course, the networks' topology has been optimized, allowing the generalization ability to be controlled. Despite the lack of data, the results are promising. Mean relative errors are between 8% and 20%, and the main levers for improvement are identified. In this paper, the study deals with a large range of materials (polymers and metallic alloys).

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3