Study of electrical properties of Al/Si3N4/n-GaAs MIS capacitors deposited at low and high frequency PECVD

Author:

Zibar Wafaa,Richard Olivier,Drighil Asmaa,Lachhab Touria,Mziouek Hasna,Aimez Vincent,Jaouad Abdelatif,Adhiri Rhma

Abstract

As for silicon, surface passivation of GaAs and III-V semiconductors using silicon nitride (Si3N4) deposited by plasma enhanced chemical deposition (PECVD) is widely used to improve devices and circuits stability, reliability and for encapsulation. In this work, the effect of plasma excitation frequency in the PECVD reactor on the surface passivation efficiency of GaAs during Si3N4 deposition was investigated. Metal-Insulator-Semiconductor (Al/Si3N4/n-GaAs) capacitors are fabricated and characterized using capacitance–voltage (CV), and conductance–voltage (GV) to compare electronic properties of GaAs/Si3N4 interfaces depending on the use of a high frequency PECVD (HF-PECVD) or low frequency (LF-PECVD) process. The drastic advantage of using the LF-PECVD technique for the passivation of GaAs is clearly demonstrated on the characteristic CV at 1 MHz where a good surface potential was observed, while a quasi-pinned surface Fermi level was found when HF-PECVD was used. To unpin Fermi level, a sulfur pre-treatment prior before HF-PECVD deposition and post-metallisation annealing were necessary. A lower frequency dispersion and a lower hysteresis indicating low densities of slow traps were observed for MIS devices fabricated by LF-PECVD. The advantage of having an efficient passivation without sulfur treatment is important since ammonium sulfide used for this purpose is corrosive and difficult to adapt in industrial environment. The better electronic properties of GaAs/Si3N4 interface were found for silicon nitride layers using LF-PECVD deposition. This can probably be associated with the high-level injection of H+ ions on the semiconductor surface reducing thus the native oxides during the initial steps of dielectric deposition.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3