Effect of Rashba spin-orbit coupling interaction on energy states of silicon disk-shaped quantum dot

Author:

El Kazdir Moulay Said,Rzaizi Mourad,El Assali Kassem,Abouelaoualim Driss

Abstract

Silicon quantum dots (QDs) are considered an excellent platform for spin qubits due to their weak spin-orbit interaction (SOI). Indeed, due to quantum confinement, novel spin properties arise from the SOI. In this work, we have studied the influence of the Rashba SOI and the confinement potential on the energy spectrum of an electron confined in a Silicon disk-shaped quantum dot, in the presence of an external magnetic field. The effects of the QD size, the confinement potential and the Rashba alpha coefficient on the energy levels are also studied. We used the effective mass approximation to determine the energy levels and their wave functions for different states. The results are presented as a function of the magnetic field in the presence and absence of SOI. We find that the energy levels of the electrons behave very differently depending on the magnetic field. The energy of all states changes with increasing magnetic field and each energy level splits into two and the energy difference between these two levels also increases with magnetic field, in the presence and absence of SOI. The energy levels are proportional to the Rashba alpha coefficient and inversely proportional to the radius of the QD.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rashba effect in Frost–Musulin quantum dots: analytical study;Optical and Quantum Electronics;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3