Abstract
Magnetostriction is the magnetisation-induced strain in ferromagnetic materials. It highly depends on mechanical stress. Stress state in electromagnetic devices is usually multiaxial and its effect on magnetostrictive properties is not easily predicted. In this paper, an original three-parameter analytical model for the stress-dependent magnetostriction strain of ferromagnetic materials is proposed. It is based on a simplified energetic description of magneto-elastic behaviour. It follows a similar method previously adopted for the description of the effect of stress on the magnetic permeability of magnetic materials. It is applied for the first time to the magnetostriction behaviour and results in a simple formula to express the effect of multiaxial magneto-mechanical loadings on the magnetostriction strain. The approach also naturally includes the description of the so-called ΔE effect. The analytical formula is derived in the paper. It shows very satisfying agreement with experimental results on iron–cobalt alloy and pure iron specimen.
Subject
Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献