Physics of the sapphire whispering-gallery-mode solid-state MASER oscillator

Author:

Mrad MohamadORCID,Tarhini AhmadORCID,Bourgeois Pierre-Yves,Giordano VincentORCID

Abstract

The Cryogenic Sapphire Oscillator (CSO) is currently the best available technology that can provide a relative frequency stability better than 10−15 with integration times between 1 s and 10,000 s. But, the CSO remains a complex instrument that requires multiple loop controls to achieve the best frequency stability. The possibility to use the sapphire resonator in a self-sustained MASER oscillator presents an elegant alternative to the CSO. Here, sustaining the amplification is achieved through the interaction between a high-Q factor whispering gallery mode and the paramagnetic Fe3+ ions, which are present in small concentration in the sapphire crystal. The Fe3+ ion exhibits three energy states enabling to realize a self-sustaining solid-state maser. Although, this principle has been already experimentally demonstrated few years ago, its development as a truly usable ultra-stable source has not yet been completed, mainly due to the lack of control of the complex physical phenomena involved. This paper complements the previous theoretical work based on the rate equations model. Here we derive the full quantum equations describing the evolution of the Fe3+ ions inside the sapphire lattice and submitted to a pump and a maser signal. The influence of the ions concentration and spin-spin relaxation time will be pointed out.

Funder

femto-st

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3