Reduction of residual stress in polymorphous silicon germanium films and their evaluation in microbolometers

Author:

Jimenez Ricardo,Moreno Mario,Torres Alfonso,Ambrosio Roberto,Heredia Aurelio,Ponce Arturo

Abstract

Hydrogenated polymorphous silicon germanium (pm-SixGe1–x:H) thin films were deposited by the PECVD technique at 200 °C. Three compositions were investigated by changing the silane/germane gas mixture. It was found that the temperature coefficient of resistance (TCR) varies from 2.25% K−1 to 4.26% K−1 while the electrical conductivity ranges from 9.1 × 10−6 S cm−1 to 3.7 × 10−3 S cm−1. On the other hand, the residual stress of as-deposited films was highly compressive reaching values of nearly 700 MPa. After a thermal annealing of 3 hours, it was observed an acceptable reduction and a slight change towards tensile stress. A thin film with low residual stress and high TCR was chosen to manufacture test microbolometers in order to assess if the thermosensing properties of pm-SixGe1–x:H were not affected. After fabricating the microbolometers, their structural conditions were evaluated by scanning electron microscopy and it was found that the reduction of stress significantly improved their mechanical stability and reduced the warping of the membranes. Finally, test structures were characterized at a chopper frequency of 30 Hz, with a DC current of 2.5 μA in a vacuum environment of 20 mTorr. Voltage responsivity of 1.9 × 106 V/W, detectivity of 4.4 × 108 cm ∙ Hz1/2/W, NEP of 1 × 10−11 W/Hz1/2, NETD of 18 mK and 2 ms of thermal response time were measured. In summary, we have studied different process conditions to obtain better pm-SixGe1–x:H films in terms of their electrical and mechanical properties. In this sense, the results obtained with microbolometers show that pm-SixGe1–x:H is a very attractive material to develop infrared vision systems with high sensitivity.

Publisher

EDP Sciences

Subject

Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3