Author:
Jimenez Ricardo,Moreno Mario,Torres Alfonso,Ambrosio Roberto,Heredia Aurelio,Ponce Arturo
Abstract
Hydrogenated polymorphous silicon germanium (pm-SixGe1–x:H) thin films were deposited by the PECVD technique at 200 °C. Three compositions were investigated by changing the silane/germane gas mixture. It was found that the temperature coefficient of resistance (TCR) varies from 2.25% K−1 to 4.26% K−1 while the electrical conductivity ranges from 9.1 × 10−6 S cm−1 to 3.7 × 10−3 S cm−1. On the other hand, the residual stress of as-deposited films was highly compressive reaching values of nearly 700 MPa. After a thermal annealing of 3 hours, it was observed an acceptable reduction and a slight change towards tensile stress. A thin film with low residual stress and high TCR was chosen to manufacture test microbolometers in order to assess if the thermosensing properties of pm-SixGe1–x:H were not affected. After fabricating the microbolometers, their structural conditions were evaluated by scanning electron microscopy and it was found that the reduction of stress significantly improved their mechanical stability and reduced the warping of the membranes. Finally, test structures were characterized at a chopper frequency of 30 Hz, with a DC current of 2.5 μA in a vacuum environment of 20 mTorr. Voltage responsivity of 1.9 × 106 V/W, detectivity of 4.4 × 108 cm ∙ Hz1/2/W, NEP of 1 × 10−11 W/Hz1/2, NETD of 18 mK and 2 ms of thermal response time were measured. In summary, we have studied different process conditions to obtain better pm-SixGe1–x:H films in terms of their electrical and mechanical properties. In this sense, the results obtained with microbolometers show that pm-SixGe1–x:H is a very attractive material to develop infrared vision systems with high sensitivity.
Subject
Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献