Bottom-up and top-down effects on phytoplankton functional groups in Hulun Lake, China

Author:

Ma ChengxueORCID,Zhao Chang,Mwagona Patteson ChulaORCID,Li Ziyu,Liu Zixuan,Dou Huashan,Zhou Xuehong,Bhadha Jehangir H.ORCID

Abstract

The debates about the extent to which phytoplankton in freshwater ecosystems are regulated by top-down or bottom-up forces have been ongoing for decades. This study examines the effects of bottom-up and top-down factors on the phytoplankton functional groups in a eutrophic lake. Phytoplankton and zooplankton were sampled and physical-chemical variables measured from May 2019 to October 2019 in Lake Hulun, China. Approximately 43 phytoplankton species were observed and grouped into 23 functional groups. For the zooplankton, about 27 species were observed and classified into 8 functional groups. The study revealed that the bottom-up effects of physical-chemical variables on some phytoplankton functional groups was stronger than the top-down effects of zooplankton. Water temperature (WT), total phosphorus (TP), total nitrogen (TN), conductivity (Cond), water transparency (SD), and dissolved oxygen (DO) significant influence the biomass of the phytoplankton functional groups. The biomass of phytoplankton functional groups was influenced positively by nutrient availability likely because nutrients influence the growth and reproduction of phytoplankton in freshwater. WT and DO had a positive influence on biomass of phytoplankton functional groups. Conversely, phytoplankton biomass revealed a decreasing trend when SD and Cond significantly increased. This study showed that zooplankton functional groups were positively correlated with phytoplankton biomass implying that the top-down control of phytoplankton by the zooplankton in the lake is not strong enough to produce a negative effect. It is evident that the zooplankton functional groups in Lake Hulun are controlled more by bottom-up force than top-down.

Publisher

EDP Sciences

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3