Which barcode to decipher freshwater microalgal assemblages? Tests on mock communities

Author:

Canino AlexisORCID,Lemonnier Clarisse,Alric BenjaminORCID,Bouchez AgnèsORCID,Domaizon IsabelleORCID,Laplace-Treyture ChristopheORCID,Rimet FrédéricORCID

Abstract

DNA metabarcoding can be a promising alternative to microscopy for analysing phytoplankton, a key ecological indicator for freshwater ecosystems. The aim of this study was to evaluate the performance of different barcodes and associated primer pairs to assess microalgal diversity with DNA metabarcoding using a single barcode targeting all microalgae. We investigated barcodes in 16S and 23S rRNA genes, encoding for prokaryotic ribosomal sub-units, that are present in Cyanobacteria as well as in chloroplasts.In silicoPCR tests were carried out on eight 16S and five 23S primer pairs using the Phytool reference library. Two and three pairs were selected for 16S and 23S, respectively, to perform anin vitrometabarcoding test based on a mock community made of DNA extracts of 10 microalgae strains. The 23S pairs enabled to detect all species, whereas 16S ones failed in the detection of some of them. One pair was selected for each genetic marker, based on its efficiency and specificity towards microalgae (e.g.not heterotrophic bacteria). Another mock community covering a larger diversity (18 microalgae strains) was used to test the efficiency of the selected pairs and their ability to estimate relative abundances. The 23S pair performed better than the 16S one for detecting target species with also more accuracy to assess their relative abundances. We conclude that the 23S primer pair ECLA23S_F1/ECLA23S_R1 appears as a good candidate to decipher freshwater phytoplankton communities. As a next step, it will be necessary to confirm these results on a large diversity of natural communities.

Funder

OFB - Pôle R&D ECLA

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3