Effects of a lagoon on performances of a freshwater fishpond in a multi-trophic aquaculture system

Author:

Jaeger ChristopheORCID,Roucaute Marc,Nahon Sarah

Abstract

Integrated multi-trophic aquaculture (IMTA) is a way to help preserve the environment while maintaining a good level of total production. An ecologically semi-intensive pond system was designed in which a polyculture fishpond was associated with a lagoon planted with macrophytes to bioremediate the water. The properties of this “semi-intensive coupled” system (SIC) were compared to those of semi-intensive (SI) and extensive (E) systems, each of which was contained in a single fishpond with the same fish polyculture (common carp (Cyprinus carpio), roach (Rutilus rutilus), and perch (Perca fluviatilis)) as SIC. E differed in that it had half the initial density of fish, and the fish were not fed. Fish growth performances, water quality (chemical and biological indicators), chlorophyll concentrations, and invertebrate production were measured. The systems were compared based on fish production performances and physicochemical and biological characteristics, and were then described using principal component analysis (PCA). Carp and roach in the two fed systems had higher growth performances than those in E. Compared to SI, the planted lagoon in SIC, induced a decrease of 15% in fish growth performances and of 83% in total chlorophyll concentration (a proxy for phytoplankton) but improved water quality (−34%, −60% and −80%, for the concentrations of total nitrogen, total phosphorus, and blue green algae (for micro-algae in class Cyanophyceae), respectively). According to the PCA, SIC clearly differed from SI in benthic macro-invertebrate production and concentrations of total nitrogen, total phosphorus, and brown algae (for micro-algae in class Dinophyceae or a branch of Bacillariophyta) in the water. SIC differed from E in oxygen parameters (dissolved and saturation), estimated annual zooplankton production, and pH. In conclusion, the properties of a lagoon reveal perspectives for environmentally friendly practices, while using biodiversity and secondary production in order to enhance fish production.

Publisher

EDP Sciences

Subject

Aquatic Science

Reference35 articles.

1. Acierno R, Blancheton Jean-Paul, Bressani G, Ceruti Laetitia, Chadwick D, Roque D'Orbcastel Emmanuelle, Claricoates J, Donaldson G. 2006. Manual on effluent treatment in aquaculture: Science and Practice. Aquaetreat. CONTRACT N. COLL-CT-2003-5003 05. https://archimer.ifremer.fr/doc/00000/6496/.

2. The role of zooplankton as food in carp pond farming: a review

3. Aubin J, Rey-Valette H, Mathé S, Wilfart A, Legendre M, Slembrouck J, Chia E, Masson G, Callier M, Blancheton JP, Tocqueville A, Caruso D, Fontaine P. 2014. Guide de mise en œuvre de l’intensification écologique pour les systèmes aquacoles © Diffusion, INRA-Rennes, p. 131. ISBN: 978-2-9547969-1-8.

4. Secondary production of freshwater zooplankton communities exposed to a fungicide and to a petroleum distillate in outdoor pond mesocosms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3