Objective Content Validation of the Hemodynamic and Technical Parameters of the OrpheusTM Cardiopulmonary Bypass Simulator

Author:

Searles Bruce E.,Darling Edward M,Riley Jeffrey B.,McNinch Jacob,Rufa Erik,Wiles Jason R.

Abstract

The utilization of simulators for training is increasing in the professions associated with cardiac surgery. Before applying these simulators to high-stakes assessment, the simulator’s output data must be validated. The aim of this study is to validate a Cardiopulmonary Bypass (CPB) simulator by comparing the simulated hemodynamic and technical outputs to published clinical norms. Three Orpheus™ CPB simulators were studied and compared to a published reference of physiologic and technical metrics that are managed during clinical CPB procedures. The limits of the simulators user modifiable variables were interrogated across their full range and the results were plotted against the published clinical norms. The data generated with the simulator conforms to validated clinical parameters for patients between 50 and 110 kg. For the pre- and post-CPB periods, the independent variables of central venous pressure (CVP), heart rate (HR), contractility, and systemic vascular resistance (SVR) must be operated between the limits of 7 and 12 mmHg, 65 and 110 beats/min, 28% and 65%, and 6 and 32 units respectively. During full CPB the arterial pump flows should be maintained between 3.5 and 5.5 LPM and SVR between 18 and 38 units. Validated technical parameters during cardioplegia delivery are expected at solution flow rates between 250 and 400 mL/min and 100 and 225 mL/min for antegrade and retrograde delivery routes, respectively. We have identified the limits for user-modifiable settings that produce data conforming to the physiologic and technical parameter limits reported in the peer reviewed literature. These results can inform the development of simulation scenarios used for high stakes assessments of personnel, equipment, and technical protocols.

Publisher

EDP Sciences

Subject

Cardiology and Cardiovascular Medicine,Health Professions (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3