Forecasting the wind power generation in China by seasonal grey forecasting model based on collaborative optimization

Author:

Sui Aodi,Qian Wuyong

Abstract

Renewable energy represented by wind energy plays an increasingly important role in China’s national energy system. The accurate prediction of wind power generation is of great significance to China’s energy planning and power grid dispatch. However, due to the late development of the wind power industry in China and the lag of power enterprise information, there are little historical data available at present. Therefore, the traditional large sample prediction method is difficult to be applied to the forecasting of wind power generation in China. For this kind of small sample and poor information problem, the grey prediction method can give a good solution. Thus, given the seasonal and long memory characteristics of the seasonal wind power generation, this paper constructs a seasonal discrete grey prediction model based on collaborative optimization. On the one hand, the model is based on moving average filtering algorithm to realize the recognition of seasonal and trend features. On the other hand, based on the optimization of fractional order and initial value, the collaborative optimization of trend and season is realized. To verify the practicability and accuracy of the proposed model, this paper uses the model to predict the quarterly wind power generation of China from 2012Q1 to 2020Q1, and compares the prediction results with the prediction results of the traditional GM(1,1) model, SGM(1,1) model and Holt-Winters model. The results are shown that the proposed model has a strong ability to capture the trend and seasonal fluctuation characteristics of wind power generation. And the long-term forecasts are valid if the existing wind power expansion capacity policy is maintained in the next four years. Based on the forecast of China’s wind power generation from 2021Q2 to 2024Q2 in the future, it is predicted that China’s wind power generation will reach 239.09 TWh in the future, which will be beneficial to the realization of China’s energy-saving and emission reduction targets.

Funder

Fundamental Research Funds for the Central Universities

Humanities and Social Science Foundation of Ministry of Education

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3