Abstract
In this article, an economic order quantity model has been studied in view of joint impacts of the memory and learning due to experiences on the decision-making process where demand is considered as price dependant function. The senses of memory and experience-based learning are accounted by the fractional calculus and dense fuzzy lock set respectively. Here, the physical scenario is mathematically captured and presented in terms of fuzzy fractional differential equation. The α-cut defuzzification technique is used for dealing with the crisp representative of the objective function. The main credit of this article is the introduction of a smart decision-making technique incorporating some advanced components like memory, self-learning and scopes for alternative decisions to be accessed simultaneously. Besides the dynamics of the EOQ model under uncertainty is described in terms of fuzzy fractional differential equation which directs toward a novel approach for dealing with the lot-sizing problem. From the comparison of the numerical results of different scenarios (as particular cases of the proposed model), it is perceived that strong memory and learning experiences with appropriate keys in the hand of the decision maker can boost up the profitability of the retailing process.
Subject
Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献