Two-dipole model of the asymmetric Sun

Author:

Zieger BertalanORCID,Mursula KaleviORCID

Abstract

The large-scale photospheric magnetic field is commonly thought to be mainly dipolar during sunspot minima, when magnetic fields of opposite polarity cover the solar poles. However, recent studies show that the octupole harmonics contribute comparably to the spatial power of the photospheric field at these times. Also, the even harmonics are non-zero, indicating that the Sun is hemispherically asymmetric with systematically stronger fields in the south during solar minima. We present here an analytical model of two eccentric axial dipoles of different strength, which is physically motivated by the dipole moments produced by decaying active regions. With only four parameters, this model closely reproduces the observed large-scale photospheric field and all significant coefficients of its spherical harmonics expansion, including the even harmonics responsible for the solar hemispheric asymmetry. This two-dipole model of the photospheric magnetic field also explains the southward shift of the heliospheric current sheet observed during recent solar minima.

Funder

Academy of Finland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simplified Model of the Solar Magnetic Field;The Astrophysical Journal;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3