On the global ionospheric diurnal double maxima based on GPS vertical total electron content

Author:

Chen PengORCID,Wang Rong,Yao Yibin,An Zhiyuan,Wang Zhihao

Abstract

Ionospheric diurnal double maxima (DDM) is a twin-peak pattern in the ionospheric electron density/total electron content (TEC) during the daytime. Understanding the characteristics of DDM is essential to study the physical mechanisms of the ionosphere. In this paper, the vertical TEC data (VTEC) in 2019–2020 derived from 537 globally distributed GPS stations were used to investigate the DDM phenomenon. The results reveal that the occurrence rate of DDMs is roughly quasi-symmetrical about the magnetic equator. In the northern hemisphere, it first increases, then decreases, and finally increases with the increase of magnetic latitude. The DDM phenomenon also exhibits significant seasonal variation. It mainly appears in summer/winter in the northern/southern hemisphere, and the valley and the second peak usually appear earlier in winter and later in summer. According to the difference in the magnitude of the two peaks of DDM, the DDM phenomenon is mainly manifested as the front peak significant type or the posterior peak significant type. The probability of the former shows an M-shaped variation with increasing longitude in the middle and high latitudes of the northern hemisphere and an inverted V-shaped variation in the high latitudes of the southern hemisphere within 180°W~60°W. The probability of the posterior peak significant type shows a trend opposite to the front peak significant type in each area. The occurrence time of DDM structures is usually about one hour later in low-latitude regions than in other regions, and the duration is usually shorter than in other regions. The relative magnitude of the DDM’s twin peaks in low-latitude regions is usually smaller than in other regions.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3