Impact of medium-scale traveling ionospheric disturbances on network real-time kinematic services: CATNET study case

Author:

Timoté Cristhian CamiloORCID,Juan José MiguelORCID,Sanz JaumeORCID,González-Casado GuillermoORCID,Rovira-García AdriàORCID,Escudero MiquelORCID

Abstract

Medium-scale traveling ionospheric disturbances (MSTIDs) are fluctuations in the plasma density that propagate through the upper layer of the atmosphere at velocities of approximately 100 m/s and periods reaching some tens of minutes. Due to their wavelengths, MSTIDs can degrade the performance of differential positioning techniques, such as real-time kinematics (RTK) or network-RTK (NRTK). This paper defines a novel methodology as a tool for relating the errors in NRTK positioning based on an MSTIDs indicator using the second difference in time of the slant total electron content (STEC). The proposed methodology performs integer ambiguity resolution (IAR) on the undifferenced measurements instead of using double-differenced carrier-phase measurements, as it is usual in RTK and NRTK. Statistical tests are applied to evaluate the degradation in the position errors caused by the impacts of MSTIDs on RTK and NRTK positioning over a data set spanning one year gathered from the CATNET network; a dual-frequency network of fixed permanent GNSS receivers located at the mid-latitudes of northeastern Spain. With the development of the proposed methodology for measuring the position degradation, another results of the present research are the establishment of thresholds for the proposed MSTIDs index, which can be used to monitor the positioning solution and to warn users when the measurements are affected by MSTIDs events, relating the position error to MSTIDs that affect not only the user receivers but also of the reference receivers within the network.

Funder

European Union's Horizon 2020 research and innovation programme

Spanish Ministry of Science, Innovation and Universities RETOS

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Reference16 articles.

1. Alves P, Lachapelle G, Cannon ME, Liu J, Townsend B. 2001. Evaluation of multiple-reference DGPS RTK using a large scale network. In: Proceedings of the National Technical Meeting of the Institute of Navigation, ION NTM/2001 (January 2001, Long Beach, USA), pp. 665–671.

2. Cannon ME, Lachapelle G, Alves P, Fortes LP, Townsend B. 2001. GPS RTK Positioning using a regional reference network: Theory and results. In: Proceedings of the Global Navigation Satellite Systems Conference (May 2001, Seville, Spain), Global Navigation Satellite Systems.

3. Collins P, Lahaye F, Héroux P, Bisnath S. 2008. Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation, ION GNSS 2008 (September 2008, Savannah, USA). pp. 1315–1322.

4. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations

5. Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400-1000 km and with high geomagnetic activity

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3