Radio observatories and instrumentation used in space weather science and operations

Author:

Carley Eoin P.,Baldovin Carla,Benthem Pieter,Bisi Mario M.,Fallows Richard A.,Gallagher Peter T.,Olberg Michael,Rothkaehl Hanna,Vermeulen Rene,Vilmer Nicole,Barnes David,

Abstract

The low frequency array (LOFAR) is a phased array interferometer currently consisting of 13 international stations across Europe and 38 stations surrounding a central hub in the Netherlands. The instrument operates in the frequency range of ~10–240 MHz and is used for a variety of astrophysical science cases. While it is not heliophysics or space weather dedicated, a new project entitled “LOFAR for Space Weather” (LOFAR4SW) aims at designing a system upgrade to allow the entire array to observe the Sun, heliosphere, Earth’s ionosphere, and Jupiter throughout its observing window. This will allow the instrument to operate as a space weather observing platform, facilitating both space weather science and operations. Part of this design study aims to survey the existing space weather infrastructure operating at radio frequencies and show how LOFAR4SW can advance the current state-of-the-art in this field. In this paper, we survey radio instrumentation and facilities that currently operate in space weather science and/or operations, including instruments involved in solar, heliospheric, and ionospheric studies. We furthermore include an overview of the major space weather service providers in operation today and the current state-of-the-art in the radio data they use and provide routinely. The aim is to compare LOFAR4SW to the existing radio research infrastructure in space weather and show how it may advance both space weather science and operations in the radio domain in the near future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3