International cooperation: A brief history We’ve experienced

Author:

Ji Wu,Qingjiang Bai,Yongjian Xu

Abstract

The solar-terrestrial space is of considerable significance for human activities. Since the first artificial satellite Sputnik 1 was launched in 1957, more knowledge about the dynamic conditions of the space environment has been acquired. With growing dependence on modern technology – both in space and on the ground, the vulnerability of the modern society and its infrastructure to space weather has increased dramatically. To better understand, forecast and reduce the adverse effects of space weather, science programs on space weather always prioritize the measurement or acquisition of the data from different locations of the geo-space, such as in magnetopause, polar cusps, and the magnetic tail. For the ground observations, it is necessary to locate the instruments in different longitudes and latitudes. For a single country, it is impossible to cover all these observation points. Therefore, international cooperation is very much needed. The paper reviews some of the international space weather observation programs we have experienced at the system design level. It may provide lessons learned for the community that may enable such kind of cooperative programs in the future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Reference25 articles.

1. Dunlop MW, Taylor MGG, Davis JA, Pu ZY, Fazakeley AN, et al. 2005. Comparative Cluster/Double Star observations of the high and low latitude dayside magnetopause. Ann Geophys 2867–2875. https://doi.org/10.1.1.694.8654.

2. <i>Introduction</i>The Cluster mission

3. <i>Introduction</i>: The Equator-S mission

4. Liu ZX, Escoubet P, Cao JB. 2005. A Chinese-European Multiscale Mission: The Double Star Program. Multiscale Coupling of Sun-Earth Processes, pp. 509–514. https://doi.org/10.1016/B978-044451881-1/50037-X.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3