Abstract
As part of the space weather monitoring, the response of the ionosphere and plasmasphere to geomagnetic storms is typically under continuous supervision by operational services. Fortunately, Global Navigation Satellite System (GNSS) receivers on board low Earth orbit satellites provides a unique opportunity for developing image representations that can capture the global distribution of the electron density in the plasmasphere and topside ionosphere. Among the difficulties of plasmaspheric imaging based on GNSS measurements, the development of procedures to invert the total electron content (TEC) into electron density distributions remains as a challenging task. In this study, a new tomographic reconstruction technique is presented to estimate the electron density from TEC data along the METOP (METeorological OPerational) satellites. The proposed method is evaluated during four geomagnetic storms to check the capabilities of the tomography for space weather monitoring. The investigation shows that the developed method can successfully capture and reconstruct well-known enhancement and decrease of electron density variabilities during storms. The comparison with in-situ electron densities has shown an improvement around 11% and a better description of plasma variabilities due to the storms compared to the background. Our study also reveals that the plasmasphere TEC contribution to ground-based TEC may vary 10–60% during geomagnetic storms, and the contribution tends to reduce during the storm-recovery phase.
Funder
Deutsche Forschungsgemeinschaft
Initiative and Networking Fund of the Hermann von Helmholtz-Association Deutscher Forschungszentren e.V
Subject
Space and Planetary Science,Atmospheric Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献