On the uncertain intensity estimate of the 1859 Carrington storm

Author:

Love Jeffrey J.ORCID,Rigler E. JoshuaORCID,Hayakawa HisashiORCID,Mursula KaleviORCID

Abstract

A study is made of the intensity of the Carrington magnetic storm of September 1859 as inferred from visual measurements of horizontal-component geomagnetic disturbance made at the Colaba observatory in India. Using data from modern observatories, a lognormal statistical model of storm intensity is developed, to characterize the maximum-negative value of the storm-time disturbance index (maximum –Dst) versus geomagnetic disturbance recorded at low-latitude observatories during magnetic storms. With this model and a recently published presentation of the Colaba data, the most likely maximum –Dst of the Carrington storm and its credibility interval are estimated. A related model is used to examine individual Colaba disturbance values reported for the Carrington storm. Results indicate that only about one in a million storms with maximum –Dst like the Carrington storm would result in local disturbance greater than that reported from Colaba. This indicates that either the Colaba data were affected by magnetospheric-ionospheric current systems in addition to the ring current, or there might be something wrong with the Colaba data. If the most extreme Colaba disturbance value is included in the analysis, then, of all hypothetical storms generating the hourly average disturbance recorded at Colaba during the Carrington storm, the median maximum –Dst = 964 nT, with a 68% credibility interval of [855,1087] nT. If the most extreme Colaba disturbance value is excluded from the analysis, then the median maximum –Dst = 866 nT, with a 68% credibility interval of [768,977] nT. The widths of these intervals indicate that estimates of the occurrence frequency of Carrington-class storms are very uncertain, as are related estimates of risk for modern technological systems.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenging Ring‐Current Models of the Carrington Storm;Journal of Geophysical Research: Space Physics;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3