Suprathermal electron moments in the ionosphere

Author:

Marif Hanane,Lilensten JeanORCID

Abstract

The ionospheric electron population is divided into two groups. The ambient electrons are thermalized. Their energy is usually smaller than one electron volt. Their densities and temperatures are the usual ones measured by incoherent scatter radars, or modeled by international codes such as International Reference Ionosphere (IRI). There is however a second population called the suprathermal electrons. This one is either due to photoionization or to electron impact between the thermosphere and the precipitation in the high latitude zone. In the frame of space weather, it may be the source of scintillations, plasma bulks and other physical phenomena. The suprathermal electron population can only indirectly be measured through the plasmaline and had never been modeled. Its modeling requires the computation of the electron stationary flux by solving the Boltzmann transport equation. This flux is multiplied by various powers of the velocity v and integrated to obtain the different order moments. By integrating f over v0dv, one deduces the suprathermal electron density. An integration of v1fdv allows the computation of their mean velocity. Higher moments give access to their temperature and finally to their heat flux. In this work, we demonstrate for the first time the full and rigorous calculation of the ionospheric electron moments up to three. As two case studies, we focus on high latitude in the auroral oval and low magnetic latitude over Algiers for different solar and geophysical conditions. We compare the suprathermal densities and temperatures to the thermal electron parameters. Our results highlight that – as expected – the suprathermal density is small compared to the thermal one. Although it is close to 3 × 103 m−3 at 180 km during the day, it drops drastically at night, to hardly reach 3 m−3. Contrarily to the density, the velocity is about 10 times more important during the nighttime when precipitation occurs than during the daytime under the electromagnetic solar flux. At 400 km, it varies during the day between 700,000 m s−1 (active solar conditions) and 900,000 m s−1 (quiet Sun). At night, the velocity varies between 3 × 106 m s−1 (low mean energy precipitation) and 3 × 107 m s−1 (high mean energy precipitation) at 400 km. The suprathermal temperature increases as the solar activity decreases or as the mean energy of the electron precipitation increases. It may reach values close to 3 × 108 K. The heat flux may be fully oriented downward or experiences a reversal with some flux going up depending on the forcing.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3