Estimating the electric field response to the Halloween 2003 and September 2017 magnetic storms across Scotland using observed geomagnetic fields, magnetotelluric impedances and perturbation tensors

Author:

Simpson FionaORCID,Bahr Karsten

Abstract

Geomagnetic storms generate heightened magnetovariational activity, which induces electric fields that drive hazardous currents known as geomagnetically induced currents (GICs) through man-made technological conductors including power transmission lines, railway networks and gas pipelines. We multiply magnetotelluric (MT) impedances from 23 sites in Scotland and northern England with measured geomagnetic field spectra from the Halloween 2003 and September 2017 storms to estimate maximum peak-to-peak, electric field magnitudes and directions for these storms, which we present as hazard maps. By sampling these electric fields in the direction of the longest (>50 km), high-voltage (275 and 400 kV) Scottish power transmission lines and integrating along their lengths, we estimate their associated transmission-line voltages. Lateral electrical conductivity variations in the Earth generate horizontal magnetic field gradients. We investigate the effect of these gradients on electric field estimates obtained using remote magnetic fields by applying a correction to the impedance tensor derived from the magnetic perturbation tensor between the local MT site and the remote magnetic field site. For the September 2017 storm, we also compare our estimated electric fields with a unique dataset comprising measured storm-time electric fields from 7 MT sites. We find that peak-to-peak, electric field magnitudes may have reached 13 V/km during the Halloween storm in some areas of the Scottish Highlands, with line-averaged electric fields >5 V/km sustained along a number of long-distance, high-voltage power transmission lines; line-averaged electric fields for the September 2017 storm are 1 V/km or less. Our surface electric fields show significant site-to-site variability that arises due to Earth’s internal 3D electrical conductivity structure, as characterised by the MT impedance tensors.

Funder

Natural Environment Research Coucil

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3