Graphical evidence for the solar coronal structure during the Maunder minimum: comparative study of the total eclipse drawings in 1706 and 1715

Author:

Hayakawa HisashiORCID,Lockwood MikeORCID,Owens Matthew J.ORCID,Sôma Mitsuru,Besser Bruno P.,van Driel-Gesztelyi Lidia

Abstract

We discuss the significant implications of three eye-witness drawings of the total solar eclipse on 1706 May 12 in comparison with two on 1715 May 3, for our understanding of space climate change. These events took place just after what has been termed the “deep Maunder Minimum” but fall within the “extended Maunder Minimum” being in an interval when the sunspot numbers start to recover. Maria Clara Eimmert’s image in 1706 is particularly important because she was both a highly accomplished astronomical observer and an excellent artist: it was thought lost and was only re-discovered in 2012. Being the earliest coronal drawings of observational value yet identified, these drawings corroborate verbal accounts a corona without significant streamers, seen at totality of this and another eclipse event in 1652 during the Maunder Minimum. The graphical evidence implies that the coronal solar magnetic field was not lost but significantly weakened and the lack of coronal structure means there was little discernable open flux (either polar or at lower latitudes) even during the recovery phase of the Maunder Minimum. These observations provide evidence for a different state of oscillation of the solar dynamo, and hence behaviour of the Sun, in comparison with that during normal solar cycle minima (when a streamer belt between two polar coronal holes is visible) or near normal sunspot maxima (when coronal structure is caused by coronal holes at all latitudes) even to observers without a telescope.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3