Disentangling nonlinear geomagnetic variability during magnetic storms and quiescence by timescale dependent recurrence properties

Author:

Alberti TommasoORCID,Lekscha JaquelineORCID,Consolini GiuseppeORCID,De Michelis PaolaORCID,Donner Reik V.ORCID

Abstract

Understanding the complex behavior of the near-Earth electromagnetic environment is one of the main challenges of Space Weather studies. This includes both the correct characterization of the different physical mechanisms responsible for its configuration and dynamics as well as the efforts which are needed for a correct forecasting of several phenomena. By using a nonlinear multi-scale dynamical systems approach, we provide here new insights into the scale-to-scale dynamical behavior of both quiet and disturbed periods of geomagnetic activity. The results show that a scale-dependent dynamical transition occurs when moving from short to long timescales, i.e., from fast to slow dynamical processes, the latter being characterized by a more regular behavior, while more dynamical anomalies are found in the behavior of the fast component. This suggests that different physical processes are typical for both dynamical regimes: the fast component, being characterized by a more chaotic and less predictable behavior, can be related to the internal dynamical state of the near-Earth electromagnetic environment, while the slow component seems to be less chaotic and associated with the directly driven processes related to the interplanetary medium variability. Moreover, a clear difference has been found between quiet and disturbed periods, the former being more complex than the latter. These findings support the view that, for a correct forecasting in the framework of Space Weather studies, more attention needs to be devoted to the identification of proxies describing the internal dynamical state of the near-Earth electromagnetic environment.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3