Necessary conditions of first-order for an optimal boundary control problem for viscous damage processes in 2D

Author:

Farshbaf-Shaker M. Hassan,Heinemann Christian

Abstract

Controlling the growth of material damage is an important engineering task with plenty of real world applications. In this paper we approach this topic from the mathematical point of view by investigating an optimal boundary control problem for a damage phase-field model for viscoelastic media. We consider non-homogeneous Neumann data for the displacement field which describe external boundary forces and act as control variables. The underlying hyberbolic-parabolic PDE system for the state variables exhibit highly nonlinear terms which emerge in context with damage processes. The cost functional is of tracking type, and constraints for the control variable are prescribed. Based on recent results from [M.H. Farshbaf−Shaker and C. Heinemann, Math. Models Methods Appl. Sci. 25 (2015) 2749–2793], where global-in-time well-posedness of strong solutions to the lower level problem and existence of optimal controls of the upper level problem have been established, we show in this contribution differentiability of the control-to-state mapping, well-posedness of the linearization and existence of solutions of the adjoint state system. Due to the highly nonlinear nature of the state system which has by our knowledge not been considered for optimal control problems in the literature, we present a very weak formulation and estimation techniques of the associated adjoint system. For mathematical reasons the analysis is restricted here to the two-dimensional case. We conclude our results with first-order necessary optimality conditions in terms of a variational inequality together with PDEs for the state and adjoint state system.

Publisher

EDP Sciences

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3