Abstract
For gradient systems depending on a microstructure, it is desirable to derive a macroscopic gradient structure describing the effective behavior of the microscopic scale on the macroscopic evolution. We introduce a notion of evolutionary Gamma-convergence that relates the microscopic energy and the microscopic dissipation potential with their macroscopic limits via Gamma-convergence. This new notion generalizes the concept of EDP-convergence, which was introduced in [26], and is now called relaxed EDP-convergence. Both notions are based on De Giorgi’s energy-dissipation principle (EDP), however the special structure of the dissipation functional in terms of the primal and dual dissipation potential is, in general, not preserved under Gamma-convergence. By using suitable tiltings we study the kinetic relation directly and, thus, are able to derive a unique macroscopic dissipation potential. The wiggly-energy model of Abeyaratne-Chu-James (1996) serves as a prototypical example where this nontrivial limit passage can be fully analyzed.
Funder
Deutsche Forschungsgemeinschaft
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献