Abstract
In this article, the minimum time control problem of an electric vehicle is modeled as a Mayer problem in optimal control, with affine dynamics with respect to the control and with state constraints. The candidates as minimizers are selected among a set of extremals, solutions of a Hamiltonian system given by the maximum principle. An analysis, with the techniques of geometric control, is used first to reduce the set of candidates and then to construct the numerical methods. This leads to a numerical investigation based on indirect methods using the HamPath software. Multiple shooting and homotopy techniques are used to build a synthesis with respect to the bounds of the boundary sets.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Reference28 articles.
1. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004) xiv+412.
2. E. Allgower and K. Georg, Introduction to numerical continuation methods. Vol. 45 of Classics in Applied Mathematic. SIAM, Philadelphia, PA, USA (2003) xxvi+388.
3. V.G. Boltyanskiĭ, R.V. Gamkrelidze, E.F. Mishchenko and L.S. Pontryagin, The Mathematical Theory of Optimal Processes. Classics of Soviet Mathematics. Gordon and Breach Science Publishers, New York (1986) xxiv+360.
4. F.J. Bonnans, P. Martinon and V. Grélard, Bocop - A collection of examples. Technical report, INRIA (2012). RR-8053.
5. B. Bonnard and M. Chyba, Singular trajectories and their role in control theory. Vol. 40 of Mathematics & Applications. Springer-Verlag, Berlin (2003) xvi+357.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献